If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+36x-84=0
a = 3; b = 36; c = -84;
Δ = b2-4ac
Δ = 362-4·3·(-84)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-48}{2*3}=\frac{-84}{6} =-14 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+48}{2*3}=\frac{12}{6} =2 $
| 5(f−3)=f+10 | | 3y+11y+4=0 | | 19x-9/11-18x=26/11 | | 19x-9/11-18x=10/11+16/11 | | 4s-16=12 | | y-4.5=-3.1 | | x3=49 | | (2x-6)^1/2=x-2 | | 2(x-7)^1/2+3=13 | | 5x-5=3x-7+2(x+1 | | 2x-4)=(6x+6) | | (h/(1+2h)^2/3=1 | | 1200=(x+500)/4 | | 1200=(x+(2000/4))/4 | | 8x=3x+4-5x | | 3(x−2)=5(x+4) | | F(-7=9-2x+2 | | F(2)=x-5+3 | | 2(4x-5)=4x-2 | | F(-10)=x+6 | | -100x=200 | | 5^x*25^3x-2=625 | | 11x-1=54 | | -32=8-8+4u | | 7(x+9)=4x+27 | | x5-15=75 | | 8x+72=5x-48 | | -3.2+v/5=-15.7 | | -5n+205=730 | | 38y+19=57+19y | | (2x-3)/7+x=5 | | 5+2(4x-4)=-3(1-2x) |